Return to sample list

 

 

PSV SIMULATION
FOR
GAS-WATER SEPARATION SYSTEM

 

 

View:               Process Flow Diagram

 

View:               Simulation Results

 

 

Description

This example shows the simulation of 4 pressure safety devices to be design for an off-shore gas-condensate treatment plant.

It also presents how the SETSTR (stream creation) function can be used for preparing input streams of pressure safety devices.

 

A Gas/Water Separation System, to be installed on an offshore platform, is designed to separate from hydrocarbon gas and condensate as much as possible the produced and condensed free water. Separation of the sour water is necessary for sealine corrosion protection.

This system includes also a facilities for testing individual wells that are gathered at the inlet of this plant.

The system operates at very high pressure: gas condensate feed stream is received at 241 bar.

 

The inlet fluid is treated in two parallel free water KO-drums (FWKO). Separated water will be sent to sour water treatment system.

 

FWKO drums operate at about 125 bar with a design pressure of 140 bar

 

Pressure safety devices are to be design to protect equipments from various contingencies (fire, equipment failures, etc.).

 

 


Feed stream

 

The feed composition is defined using 23 chemical components and a hypothetical components. Its status as generated by the simulation is as follows.

 

    * STREAM 'FEED    '

 

  - Temperature    90.000 CENT   - Pressure   241.0000 BAR

 

 Phase                                  TOTAL           VAPOUR         LIQUID H        LIQUID W

 Molar Flow Rate  KMOL    /HR         60862.000       59171.896        1000.998         689.106

 Weight Flow Rate KG      /HR       1316665.937     1234900.224       69348.029       12417.685

 Molar  Fraction                                       0.972231        0.016447        0.011322

 Weight Fraction                                       0.937899        0.052669        0.009431

 Molecular Weight                       21.6336         20.8697         69.2789         18.0200

 Std Vap Vol Rate N-CUMT  /HR                      1399110.2132

 Std Liq Vol Rate CUMT    /HR          112.5573                        100.1524         12.4049

 Act Volume  Rate CUMT    /HR         6725.2869       6607.8690        104.6977         12.7202

 Enthalpy         M-KJ    /HR       -62242.3146     -24650.8843     -10862.0757     -26729.3545

 Spec. Enthalpy   KJ/KG                 -47.281         -19.965        -156.660       -2152.914

                  KJ/KMOL             -1022.865        -416.674      -10853.214      -38795.522

 Spec. Heat Cap.  KJ/KG-C              3.058130        3.084924        2.384704        4.154357

                  KJ/KML-C            66.158446       64.381464      165.209567       74.861527

 Spec. Entropy    KJ/KG-C                7.2934          7.6017          2.5359          3.2065

                  KJ/KML-C             157.7835        158.6452        175.6861         57.7816

 Compressibility                                       0.891208

 Density          KG/CUMT              195.7784        186.8833        662.3641        976.2215

 Gravity at 60/60                                                      0.692407        1.001004

 Isentr. Exponent                                      1.240206

 Viscosity        CP                                 0.2332E-01      0.2296          0.3129

 Thermal Conduct. W/MC                                 0.069149        0.135337        0.663746

 Surface Tension  DYCM                                                   7.4670         60.8376

 Reference Gas Status - Temperature 15°C             - Pressure 1 atm

 

                                -----        TOTAL            PHASE     -----

 No Components                  Mol. Rate    Mol. Fr     Wt. Rate     Wt. Fr.

                                     KMOL/HR                   KG  /HR

  1  NITROGEN                      1811.525 0.029764       50740.795 0.038537

  2  CARBON DIOXIDE                1076.219 0.017683       47364.411 0.035973

  3  HYDROGEN SULPHIDE              486.152 0.007988       16568.068 0.012583

  4  METHANE                      49989.814 0.821363      801836.267 0.608990

  5  ETHANE                        3158.166 0.051891       94966.078 0.072126

  6  PROPANE                       1052.519 0.017294       46416.116 0.035253

  7  ISOBUTANE                      227.276 0.003734       13209.289 0.010032

  8  BUTANE                         382.845 0.006290       22250.941 0.016899

  9  ISOPENTANE                     155.569 0.002556       11224.281 0.008525

 10  PENTANE                        155.569 0.002556       11224.281 0.008525

 11  HEXANE                         179.269 0.002945       15449.368 0.011734

 12  CYCLOHEXANE                     23.700 0.000389        1994.609 0.001515

 13  METHYLCYCLOPENTANE              18.231 0.000300        1534.314 0.001165

 14  BENZENE                         12.154 0.000200         949.334 0.000721

 15  HEPTANE                        185.346 0.003045       18573.477 0.014106

 16  METHYLCYCLOHEXANE               48.008 0.000789        4713.763 0.003580

 17  METHYLBENZENE                   18.231 0.000300        1679.777 0.001276

 18  OCTANE                         197.499 0.003245       22560.348 0.017134

 19  ETHYLBENZENE                    77.784 0.001278        8258.364 0.006272

 20  NONANE                         167.115 0.002746       21434.144 0.016279

 21  1-METH-3-ETH-BENZENE            23.700 0.000389        2848.588 0.002163

 22  DECANE                         131.261 0.002157       18677.139 0.014185

 23  C11 PLUS FRAC                  305.060 0.005012       64550.801 0.049026

 24  WATER                          978.989 0.016085       17641.385 0.013399

  ***    TOTAL    ***             60862.000 1.000000     1316665.937 1.000000

 

 

 

Thermodynamic methods

The Soave-Redlich-Kwong (SRK) or Peng-Robinson (PR) equations of state can be used to simulate this problem. In this particular case the SRK-KD, Kabadi-Danner modification of the SRK equation, is selected to get a better results of the water-hydrocarbon interactions.

 


Results

 

The SETSTR operations copy necessary stream compositions to be used for the simulation of safety valves and reset the flow-rate to a nominal 1000 kmol/hr for easy scaling of the results.

 

One of the simulated pressure safety devices is presented hereunder.

 

***   UNIT   10 - 'PSD1    ' - ' PRESSURE SAFETY DEVICE       '   ***

                             --- Feed Streams ---          - Product  Streams -

                             'S1PSV   '                    'S1O     '                                  

 

    1) * OPERATING CONDITIONS *

 

      Relief pressure      241.000 bar    

      Relief temperature      90.00 °C 

      Relief status - Molar fractions

      Vap 0.969561 - Liq 1/H 0.015812 - Liq 2/W 0.014626

 

      Flow is critical

      Critical flow pressure      129.924 bar        Ratio   0.5391

      Critical flow temperature     51.47 °C 

      Status - Molar fractions

      Vap 0.945761 - Liq 1/H 0.038487 - Liq 2/W 0.015752

      Fluid velocity      367.531 MT/s   

      Sonic velocity      367.816 MT/s   

      Mach no   0.9992

      Final pressure        1.000 bar    

      Final temperature      24.27 °C 

 

    2) * SIZE DATA *

 

      Calculation method ' Isentr max flow                '

      Calculated discharge area        0.196 in2

                                       1.262 CM2    

      KB value        1.000

      KC value        1.000

      KD value        1.000

 

    2) * FEEDS *

 

    Stream                      S1PSV  

    Temperature, °C                 90.00

    Pressure,    bar              241.000

    Total rate,  kmol/h        1000.0   

        Vapor,   kmol/h        969.56   

     Liquid 1/H, kmol/h        15.812   

     Liquid 2/W, kmol/h          14.6   

 

    3) * PRODUCTS *

 

    Stream                      S1O    

    Temperature, °C                 24.27

    Pressure,    bar                1.000

    Total rate,  kmol/h        1000.0   

        Vapor,   kmol/h        978.06   

     Liquid 1/H, kmol/h        12.144   

     Liquid 2/W, kmol/h          9.80   

 


 

Generated Keyword Input File

The generated key-word input file is listed hereunder.

 

<XPSIM>  ...generated by XpsimWin v.1.06 ...

*

RUN ID=OFFSHORE CUSTOMER=A-CLIENT PROJECT='XYZ GAS FIELD'

DESC XYZ GAS FIELD PRODUCTION - PHASES 1&2

DIMENSION INPUT SI PRES=BAR

Petroleum Data

HYPO ID=C11+ NAME='C11 PLUS FRAC' SPGR=0.853 MW=211.6

System Data

CHEMCOMP N2 / CO2 / H2S / C1 / C2 / C3 / IC4 / NC4 / IC5 / NC5 / NC6 +

 / CH / MCP / BNZN / NC7 / MCH / TOLU / NC8 / EBZN / NC9 / M3EZ / +

 NC10 / C11+ / H2O

THERMSET UID=M1

METHODS K=SRK-KD HS=LK CP=LK D=LK IV=LK TRAN=ELYHAN SURT=IDEAL

WOPT K=2

*  

Flowsheet Data

EQUI 3PHASE LLSM=L1L2 KEY1=H2O

STREAM=FEED TEMP=90 PRES=241 RATE=60862 XBASIS=M

COMP N2:2.981 / CO2:1.771 / H2S:0.800 / C1:82.262 / C2:5.197 / +

 C3:1.732 / IC4:0.374 / NC4:0.630 / IC5:0.256 / NC5:0.256 / NC6:0.295 +

 / CH:0.039 / MCP:0.030 / BNZN:0.020 / NC7:0.305 / MCH:0.079 / +

 TOLU:0.030 / NC8:0.325 / EBZN:0.128 / NC9:0.275 / M3EZ:0.039 / +

 NC10:0.216 / C11+:0.502 / H2O:1.611

SPLITTER IN FEED OUT S1T S1 UID=SPL1

SPEC STR=S1T RATE=5370.6

VALVE IN S1T OUT S2T UID=V1

CALC PRES=126

FLASH IN S2T OUT S3T(V) S5T(LW) S4T(LH) UID=VP-001 +

 DESC='TEST SEPARATOR'

VALVE IN S1 OUT S2 UID=V2

CALC PRES=125

SPLITTER IN S2 OUT S3 S3A UID=SPL2

SPEC STR=S3 RATE=0.5 RATIO

FLASH IN S3 OUT S4(V) S6(LW) S5(LH) UID=VS-001

CALC ADIA DP=0

ENTRAIN PHASE=LW IN=LH RATIO(V)=0.08

VALVE IN S4 OUT S9 UID=V3

CALC DP=-2

MIXER IN S3T S9 OUT S9M UID=MX1

COMPSEP IN S5 OUT S7 S8 UID=SEP1

OVHD STR=S7

BTMS STR=S8

OVHFLOW COMP=N2,C11+ RATIO=1

OVHFLOW COMP=H2O RATIO=0.20

SETSTR UID=SS1 STR=S1PSV

COPY STR=S1

REDEF RATE(M)=1000

PSD IN S1PSV OUT S1O UID=PSD1

PARA CALC=1 METHOD=MXFLOW PSET=241 PBACK=1

SIZE DEVICE=VALVE KB=1 KC=1 KD=1

SETSTR UID=SS2 STR=S4PSV

COPY STR=S4

REDEF RATE(M)=1000

PSD IN S4PSV OUT S11 UID=PSD2

PARA CALC=1 METHOD=MXFLOW PSET=139 PBACK=1

SIZE DEVICE=VALVE KB=1 KC=1 KD=1

SETSTR UID=SS3 STR=S2PSV

COPY STR=S2

REDEF RATE(M)=1000

PSD IN S2PSV OUT S13 UID=PSD3

PARA CALC=1 METHOD=MXFLOW PSET=139 PBACK=1

SIZE DEVICE=VALVE KB=1 KC=1 KD=1

SETSTR UID=SS4 STR=S5PSV

COPY STR=S5

REDEF RATE(M)=1000

PSD IN S5PSV OUT S15 UID=PSD4

PARA CALC=1 METHOD=OMEGA PSET=139 PBACK=1

SIZE DEVICE=VALVE KB=1 KC=1 KD=1

Output Data

PRINT FORMAT=2

END